E. G. WANG (Enge WANG)                                  
Professor of Physics
Academician of Chinese Academy of Sciences

General Secretary, Chinese Academy of Sciences
Director, Beijing National Laboratory for Condensed Matter Physics
Director Emeritus, Institute of Physics, Chinese Academy of Sciences

P. O. Box 603, Zhongguancun
Beijing 100190 , P. R. China
Phone: (86-10) 82649577
Fax: (86-10) 82649244                                    
Email: EGWang@aphy.iphy.ac.cn
http://engewang.iphy.ac.cn                                   


Academic Experience and Education

Awards and Prizes

 

Fellowships and Professional Activities

Professional Advisor Committees

Editorial Boards

Current or past supervisor

Completed supervision of 20 Ph.D. thesis, 5 M.Sc. thesis, 4 Undergraduate thesis, 8 post-doctoral fellows. About fifteen of them joined the faculty of major universities/institutes in China, Japan, North America, and Europe. Present group:  1 post-doctoral fellow plus 9 graduate students.
Among his students, Dr. Wenguang Zhu got 2004 MRS Graduate Student Silver Awards, Dr. Shenyuan Yang got 2008 MRS Graduate Student Silver Awards, Dr. Guangyu Zhang got the “100 Excellent PhD thesis in China” (2005), Dr. Guangyu Zhang (2003) and Dr. Jianjun Yang (2004) got the President Awards of Chinese Academy of Sciences for excellent research. Mr. Kaihui Liu got the Best Presentation Award, ICYS-ICMR Summer School on Nanomaterials, Tsukuba, Japan(2007) and Mr Wangyang Fu got the Best Speaker Award, the 14th Vietnam School of Physics, Quy Nhon, Vietnam(2008).

Research Interests

Wang’s research focuses on surface physics; the approach is a combination of atomistic simulation of nonequilibrium growth, chemical vapor deposition of light-element nanomaterials, and water behaviors in confinement system. One of the original contributions is the development of the Reaction-Limited-Aggregation (RLA) theory. Within this model, a fractal-to-compact island shape transition can be induced by either decreasing the growth temperature or increasing the deposition flux. This counterintuitive finding is just the opposite to the prediction of the classic Diffusion-Limited-Aggregation (DLA) model, and is in excellent qualitative agreement with experimental observations in the presence of surfactant. He and his coworkers also predicted a three-dimensional Ehrlich-Schwoebel barrier; attracted News and Views in Nature (June 2002). Another contribution is the model proposal and experimental validation of a true upward atomic diffusion; attracted Physics News Update in June 2003 and News and Views in Nature as well as Science Week in June 2004. His group experimentally realized tubular graphite cone and polymerized CN nanobells; attracted News reports of Materialstoday (June 2003) and Analytical Chemistry (July 2003). He also developed a method to synthesize single-walled boron-carbon-nitrogen nanotubes. Recently, he researches water behaviors in confinement. He proposed a two-dimensional tessellation ice, which has attracted a lot of interest and has finally been observed in experiments. His work on the water-surface coupling and the strength of the hydrogen bonds at the interfaces provides a fundamental understanding of water on surface at molecular level.

Invited Talks (selection out of 67 since 1996)

Invited Seminars and Colloquiums(selection out of 90 since 1987)

Lectures (in English) in Universities

           1) Introduction to density functional theory and its application
           2) First-principles Kinetic Monte Carlo methods applied to surface
           3) Simulation study of water molecules on surface: hydrogen bonding and phase transitions

Recent Selected Publications (Selection out of  230 since 1987)

In this area, Wang has co-authored 230 papers in peer-reviewed journals (3 in Science, 20 in PRL, 3 JACS, 37 in APL, and 9 invited review articles). SCI  citation > 3000; H-index: 29. He also got 6 patents, co-edited 1 MRS proceeding.

[31] Lei Liao,Kaihui Liu, Wenlong Wang, Xuedong Bai, Enge Wang, Yueli Liu, Jinchai Li, and
Chang Liu? J. Am. Chem. Soc. 129, 9562(2007). “Multiwall Boron Carbonitride/Carbon Nanotube Junction and Its Rectification Behavior”
[30] Lixin Zhang, E.G. Wang, Q.K. Xue, S.B. Zhang, and Z. Zhang, Phys. Rev. Lett. 97,126103(2006). “Generalized Electron Counting in Determination of Metal-Induced Reconstruction of Compound Semiconductor Surfaces”
[29] J.T. Wang, C. Chen, E.G. Wang, D.S. Wang, H. Mizuseki, and Y. Kawazoe, Phys. Rev. Lett. 97, 046103(2006). ”Two-stage rotation mechanism for group-V precursor dissociation on Si(001).“
[28] W. L. Wang, X. D. Bai, K. H. Liu, Z. Xu, D. Golberg, Y. Bando, and E. G. Wang?J. Am. Chem. Soc. 128, 6530(2006). “Direct Synthesis of B-C-N Single-Walled Nanotubes by Bias-Assisted Hot Filament Chemical Vapor Deposition”
[27] Zhi Xu, X.D. Bai, Z.L. Wang, and E.G. Wang, J. Am. Chem. Soc. 128, 1052(2006). “Multiwall carbon nanotubes made of monocharility graphite shells”.
[26] Y. Guo, Y.F. Zhang, X.Y. Bao, T.Z. Han, Z. Tang, L.X. Zhang, W.G. Zhu, E.G. Wang, Q. Niu, Z.Q. Qiu, J.F. Jia, Z.X Zhao, and Q.K. Xue, Science 306, 1915(2004), “Superconductivity modulated by quantum size effects”.
[25] Y. Jia, W.G. Zhu, E.G. Wang, Y.P. Huo, and Zhenyu Zhang, Phys. Rev. Lett. 94?086101(2005), “Initial stages of Ti growth on diamond (100) surfaces: From single adatom diffusion to quantum wire formation”
[24] N. Y. Huang, J. C. She, Jun Chen, S. Z. Deng, N. S. Xu, H. Bishop, S. E. Huq, L. Wang, D. Y. Zhong, E. G. Wang, and D. M. Chen, Phys. Rev. Lett. 93, 075501(2004),” Mechanism responsible for initiating carbon nanotube vacuum breakdown”
[23] Wenguang Zhu, H. H. Weitering, E. G. Wang, Efthimios Kaxiras and Zhenyu Zhang, Phys. Rev. Lett. 93, 126102(2004), “Contrasting growth modes of Mn on Ge(100) and Ge(111) surfaces: subsurface segregation versus intermixing”
[22] Jiandong Guo, Chunlei Yang, Z. M. Li, Ming Bai, H. J. Liu, G. D. Li, E. G. Wang, C. T. Chan, Z. K. Tang, W. K. Ge, and Xudong Xiao, Phys. Rev. Lett. 93, 017402(2004),  “Efficient Visible Photoluminescence from Carbon Nanotubes in Zeolite Templates”
[21] Jianjun Yang, S. Meng, L.F. Xu, and E. G. Wang, Phys. Rev. Lett.92,146102(2004) “Ice Tessellation on a Hydroxylated Silica Surface”
[20] W. G. Zhu, F. B. Mongeot, U. Valbusa, E. G. Wang, and Zhenyu Zhang, Phys. Rev. Lett. 92, 106102 (2004) “Adatom Ascending at Step Edges and Faceting on fcc Metal (110) Surfaces”.
[19] Y. G. Yao, L. Kleinman, A.H. MacDonald, J. Sinova, T. Jungwirth, D.S. Wang, E.G. Wang, and Q. Niu, Phys. Rev. Lett. 92, 037204(2004). “First principles calculation of anomalous hall
conductivity in ferromagnetic bcc Fe”.
[18] K.H. Wu, Y. Fujikawa, T. Nagao, Y. Hasegawa, Q.K. Xue, E.G. Wang, T. Briere, V. Kumar, Y. Kawazoe, S.B. Zhang, and T. Sakurai, Phys. Rev. Lett. 91, 126101(2003). “Na adsoeption on the Si(111)-(7X7) surface: From two-dimensional gas to nanocluster array”.
[17] F.B. Mongeot, Wenguang Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E.G. Wang, and Zhenyu Zhang, Phys. Rev. Lett. 91, 016102(2003) “Nanocrystal Formation and Faceting Instability  in Al(110) Homoepitaxy True Upward Adatom Diffusion at step Edges and Island Corners”.
[16] G. Y. Zhang, X. Jiang, and E.G. Wang, Science 300, 472(2003) “Tubular Graphite Cones.”
[15] S. Meng, L. F. Xu, E. G. Wang, and S.W. Gao, Phys. Rev. Lett. 89?176104(2002)  “Vibrational Recognition of Hydrogen-bonded Water Networks on a Metal Surface”.
[14] J. Wu, E. G. Wang, K. Varga, B.G. Liu, S. T. Panfelides, and Zhenyu Zhang, Phys. Rev. Lett. 89?146103 (2002)  “Island Shape Selection in Pt(111) Submonolayer Homoepitaxy without or with CO as Adsorbates”.
[13] Y.G. Yao, Ph. Ebert, M.Z. Li, Zhenyu Zhang, and E.G. Wang, Phys. Rev. B 66, 041407(2002)  (Rapid Communication) “Decay Characteristics of Two-dimensional Islands on Strongly  Anisotropic Surfaces".
[12] M.Z. Li, J.F. Wendelken, B.G. Liu, E.G. Wang, and Zhenyu Zhang, Phys. Rev. Lett. 86, 2345(2001) “Decay Characteristics of Surface Mounds with Contrasting Interlayer Mass Transport Channels”.
[11] J. X. Zhong, E. G. Wang, Q. Niu, and Z. Zhang, Phys. Rev. Lett. 84, 3895 (2000) “Morphological symmetry breaking during epitaxial growth at grazing incidence”.
[10] B.G. Liu, J. Wu, E.G. Wang, and Zhenyu Zhang, Phys. Rev. Lett. 83, 1195(1999) “Two-dimensional pattern formation in surfactant-mediated epitaxial growth.”
[9] X. Ma and E.G. Wang, Appl. Phys. Lett. 78, 978(2001)  "CNx/Carbon Nanotube Junctions Synthesized by Microwave Chemical Vapor Deposition".
[8] X. Ma, E.G. Wang, R. D. Tilley, D. A. Jefferson, and W. Zhou, Appl. Phys. Lett. 77, 4136 (2000)  "Size-Controlled Short Nanotubes:  Growth and Formation Mechanism".
[7] X. Ma, E.G. Wang, W. Zhou, D. A. Jefferson, J. Chen, S.Z. Deng,  N.S. Xu, and J. Yuan, Appl.  Phys. Lett. 75, 3105(1999) “Polymerized carbon nitrogen nanobells and their field emission.”
[6] X.D. Bai, E. G. Wang, J. Yu, and H. Yang, Appl. Phys. Lett. 77, 67(2000) “Blue-violet PL from large-scale highly alinged BCN nanofibers”.
[5] X. D. Bai, J. D. Guo, Jie, Yu, E. G. Wang, Jun Yuan, and W. Zhuo, Appl. Phys. Lett. 76, 2624(2000)  “Synthesis and field emission behavior of highly oriented boron carbonitride nanofibers.”
[4] J. Yu, E.G. Wang, and X. D. Bai, Appl. Phys. Lett. 78, 2226(2001) “Electron field emission from carbon nanoparticles prepared by microwave-plasma chemical-vapor deposition”.
[3] J. Yu, J. Ahn, S.F. Yoon, Q. Zhang, Rusli, B. Gan, K. Chew, M. B. Yu, X. D.  Bai, and E. G. Wang, Appl. Phys. Lett. 77, 1949(2000) “Semiconducting boron  carbonitride nanostructures: Nanotubes and nanofibers”.
[2]  J. Yu and E.G. Wang, Appl. Phys. Lett.74, 2948 (1999).    “Turbostratic B-C-N film and its field emitting behavior.”
[1] E.G.Wang, Progress in Materials Science 41(Monograph), 241(1997). “Research on Carbon Nitrides”. (review article).